5. Univariate Datenbeschreibung

. use "D:\Stata\lung1984.dta"

Nach Aufbereitung der Rohdaten liegt ein auswertbarer Datensatz, z.B. lung1984.dta, vor und man kann jetzt, zuerst eindimensional (univariat), charakteristische Kennwerte, Häufigkeiten und Verteilungen der Variablen bestimmen.

Nach dem Start des Programms wird das Stata-Dokument lung1984.dta geöffnet und eine kurze Beschreibung der Daten mit *describe* angefordert.

```
. describe
Contains data from D:\Stata\lung1984.dta
                102
 obs:
                                             6 Jun 2021 10:46
                  5
vars:
              2,040
size:
                       display
                                  value
             storage
variable name
                       format
                                  label
                                             variable label
              type
               float %9.0g
                                             Student number
mm
sex
               float %9.0g
                                             Sex (female=1, male=2)
ht
               float
                       %9.0g
                                             Height (cm)
               float %9.0g
                                             PEFR (litre/min)
pefr
                                             Vital capacity (litre)
vc
               float
                       %9.0g
```

Die Beispieldaten enthalten 102 Beobachtungen und 5 numerische Variable. Die Datei in dieser Form wurde am 6.Juni 2021 erstellt und belegt einen Speicher von 2040 bytes. Der voreingestellte Speichertyp für Zahlen zwischen $-1,7\cdot10^{38}$ und $1,7\cdot10^{38}$ ist "float", bei dem jede Zahl 4 bytes belegt. Bei 102 Beobachtungen und 5 Variablen ergibt sich ein Speicherplatz von (4+4+4+4+4)·102 = 2040 bytes. Möchte man nur von einigen Var Informationen anfordern, gibt man z.B. *describe ht pefr* ein. Weitere Informationen zu den Var erhält man auch z.B. mit *codebook sex ht*

sex	type: numeric range: [1,2] unique values: tabulation: Fr 4 5	(float) 2 eq. Valu 4 1 8 2	e	units: missing	Sex (f 1 .: 0/102	emale=1, male	=2)
ht	type: numeric range: [155,19 unique values: mean: 172.344 std. dev: 8.3 percentiles:	(float) 0] 46 5545 10% 161	25% 166.6	units: missing 50% 171.75	.1 .: 0/102 75% 178	Height 90% 183.6	(cm)

Mit *inspect ht* erhält man eine angedeutete Verteilung von *ht* sowie die Anzahl der ganzzahligen und nicht ganzzahligen Werte.

Die Kommandos *describe, codebook und inspect* lassen sich auch im Menü unter *Data >> Describe Data* aufrufen.

```
© 2022 M. Herzog
```

. inspect ht

ht:	nt: Height		(cm)			Numbe	r of Observa	tions
					-	Total	Integers	Nonintegers
			#		Negative	-	-	-
	#	#	#		Zero	-	-	-
	#	#	#		Positive	102	83	19
	#	#	#		_			
#	#	#	#	#	Total	102	83	19
#	#	#	#	#	Missing	-		
155				190	-	102		
(4	6 uni	que	value	es)				

5.1. Häufigkeiten

Zur Darstellung der Häufigkeitsverteilung z.B. der Variablen *ht* eignet sich ein Histogramm, das man mit *histogram ht, frequency* erhält. Es gibt, wie in (4) beschrieben, eine Reihe weiterer Möglichkeiten zur Bearbeitung von Grafiken.

Mit *qnorm ht* erhält man einen Q-Q-Plot zur grafischen Beurteilung einer vermuteten Normalverteilung von **ht**.

graph box ht, over (sex)

liefert die Box Plots für ht seperat für Frauen (1) und Männer (2).

STATA - kurze Einführung

Eine tabellarische Darstellung der Häufigkeitsverteilung nominaler oder ordinaler Var erhält man z.B. mit *tabulate*. Mit diesem Kommando lassen sich eindimensionale und zweidimensionale Häufigkeitstabellen erstellen. Als Kurzform für *tabulate: tab*

Zur Demonstration rufen wir geschl_karies.dta auf. Mit der Langform erhält man: *tabulate geschl* die eindimensionale Häufigkeitstabelle für *geschl* tabulate geschl

Cum.	Percent	Freq.	geschl
51.90	51.90	41	1
100.00	48.10	38	2
	100.00	79	Total

und mit dem Wertelabel *label define Geschlecht 1 "W" 2 "M"* (siehe Abschnitt 3.) tabulate geschl

Cum.	Percent	Freq.	geschl
51.90 100.00	51.90 48.10	41 38	W M
	100.00	79	Total

Im Vorgriff auf Abschnitt 6. erhält man eine zweidimensionale Häufigkeitstabelle (Vierfeldertafel, Kreuztabelle) für **geschl** und **karies**

tabulate geschl karies

tabulate geschl karies

geschl	karies nein	ia	Total
geboni		54	
W	14	27	41
М	12	26	38
Total	26	53	79

5.2. Erläuterungen zu den Kurzformen von *tabulate* Für das Kommando *tabulate* gibt es zwei Kurzformen: *tab1* und *tab2*

Mit *tab1* erhält man nur 1-dim. Tabellen, für jede Var eine Tabelle: tab1 geschl

tabulation of geschl

Cum.	Percent	Freq.	geschl
51.90	51.90	41	1
100.00	48.10	38	2
	100.00	79	Total

oder mit zwei Variablen: tab1 geschl karies

tabulation of geschl				tabulation (of karies		
geschl	Freq.	Percent	Cum.	karies	Freq.	Percent	Cum.
1	41	51.90	51.90	0	26	32.91	32.91
2	38	48.10	100.00	1	53	67.09	100.00
Total	79	100.00		Total	79	100.00	

Mit *tab2* gibt es nur 2-dim. Tabellen (Vierfeldertafeln) und daher für *tab2 geschl* eine Fehlermeldung:

```
. tab2 geschl
too few variables specified
r(102);
```

Für *tab2 geschl karies* erhält man die obige Vierfeldertafel (2x2 - Tafel) tab2 geschl karies

tabulation of geschl by karies

geschl	karies O	1	Total
1 2	14 12	27 26	41 38
Total	26	53	79

Nimmt man eine dritte Var dazu in der Art **tab2 geschl karies pla** erhält man insgesamt 3 Vierfeldertafeln ..(geschl - karies), (geschl - pla), (karies - pla). Würde man 4 Var hinzunehmen **tab2 v1 v2 v3 v4**, so erhält man 12 Vierfeldertafelnusw.

Zusammenfassung der tab - Regeln

Seien $v_1 v_2 v_3 ... v_k$ Variablen in einem Datensatz, dann erhält man mit:

	V ₁	V ₁ V ₂	$V_1 V_2 V_3 V_k$
tab	1 HT	1 KT	Fehlermeldung
tab1	1 HT	2 HT	k HT
tab2	Fehlermeldung	1 KT	$\binom{k}{2}$ KT

Bezeichnungen: HT - Häufigkeitstabelle, KT - Kreuztabelle,

Binomialkoeffizient

k

Zur Darstellung der Häufigkeit von metrischen Daten sollte zuerst eine Gruppierung durchgeführt werden (siehe Punkt 4).

5.3. Lage- und Streuungsmaße

Zur Demonstration öffnen wir lung1984.dta in Stata.

Häufig gebrauchte Maßzahlen metrischer Var berechnet man z.B mit *summarize summarize* (*var*) (*if*) (*in*) (*weight*) (*, options*)

Beispiel: summarize ht . sum ht		Abkürzung für summarize: sum					
Variable	Obs	Mean	Std. Dev.	Min	Max		
ht	102	172.3441	8.355452	155	190		

Für die Variable *ht* werden die Zahl der Beobachtungen, Mittelwert, Standardabweichung, Minimum und Maximum berechnet. Ergebnisse für Subgruppen, wie z.B. sex, erhält man mit dem Präfix *bysort*

was gleichbedeutend ist mit by sex, sort: sum ht

190

bysort sex: sum ht

. by sex, sort: sum ht

-> sex = 1					
Variable	Obs	Mean	Std. Dev.	Min	Max
ht	44	165.8068	5.860328	155	180.6
-> sex = 2					
Variable	Obs	Mean	Std. Dev.	Min	Max

ht	5	8 177	.3034	6.307194	164	

Eleganter in einer Tabelle geht es mit: tab sex, sum (ht) tab sex, sum (ht)

Sex				
(female=1,	Summary	of Height	(cm)	
male=2)	Mean	Std. Dev.		Freq.
1	165.80682	5.8603283		44
2	177.30345	6.3071938		58
Total	172.34412	8.3554523		102

Eine detailliertere Berechnung für *ht* liefert *sum ht, detail* oder für Subgruppen *bysort sex: sum ht , detail* . sum ht, detail

		Height	(cm)	
	Percentiles	Smallest		
1%	155	155		
5%	160.2	155		
10%	161	155.4	Obs	102
25%	166.6	158	Sum of Wg	t. 102
50%	171.75		Mean	172.3441
		Largest	Std. Dev.	8.355452
75%	178	188		
90%	183.6	188	Variance	69.81358
95%	186	189	Skewness	.0309148
99%	189	190	Kurtosis	2.242026

Eine kompakte Darstellung vieler Maßzahlen einer metrischen Var liefert z.B. für *ht tabstat ht, stats(n, mean, sum, sd, var, cv, sem, sk, kur, max, min, range) by(sex)*

. tabstat ht, stats(n, mean, sum, sd, var, cv, sem, sk, kur, max, min, range) by(sex)

Summary by	for variabl categories	es: of:	ht sex (Sex	(female=1,	male=2))								
sei	ĸ	N	mean	sum	sd	variance	CV	se(mean)	skewness	kurtosis	max	min	range
:	1 4	4	165.8068	7295.5	5.860328	34.34345	.0353443	.8834777	.2980303	2.79732	180.6	155	25.60001
	2 5	8	177.3034	10283.6	6.307194	39.78069	.0355729	.8281751	0206508	2.233127	190	164	26
Tota	1 10)2	172.3441	17579.1	8.355452	69.81358	.0484812	.8273131	.0309148	2.242026	190	155	35

Konfidenzintervalle für Mittelwerte erhält man entweder über *mean ht*

. mean ht

Mean estimatio	n	Number	of obs =	102
	Mean	Std. Err.	[95% Conf.	Interval]
ht	172.3441	.8273131	170.703	173.9853

oder mit

ci means ht

. ci means ht

Variable	Obs	Mean	Std. Err.	[95% Conf.	Interval]
ht	102	172.3441	.8273131	170.703	173.9853

Die Berechnung von Konfidenzintervallen für Anteile erhält sie man über:

proportion sex

. proportion sex, citype(normal)

Proportion	est	imation	Number	of obs =	102
		Proportion	Std. Err.	Norr [95% Conf.	nal Interval]
sex	1 2	.4313725 .5686275	.0490388	.3340927 .4713476	.5286524 .6659073

Dabei gibt es verschiedene Möglichkeiten der Schätzung von Konfidenzintervallen bei denen geringe Abweichungen in der Breite dieser Intervalle auftreten können:

Confidence interval type	
◯ Logit	
C Exact (Clopper-Pearson)	
Normal (Wald)	
○ Wilson	
○ Agresti-Coull	
◯ Jeffreys	

Handelt es sich beim Studiendesign um Clusterstichproben, so führt dies in der Regel zu einer Varianzvergrößerung und damit zu breiteren Konfidenzintervallen. Die Datei **kiga_5.dta** ist das Ergebnis einer Zufallsstichprobe von 5 Kindergärten, in denen alle Kinder zahnärztlich untersucht wurden (einstufige Clusterstichprobe). Der dmf - Wert zeigt die Zahl der kariesbefallenen Zähne pro Kind. Ohne Berücksichtigung des Clusterdesigns erhält man mit **mean dmf** für den mittleren dmf-Wert 1,93 mit einem Konfidenzintervall C.I. = (1,46 ; 2,39)

. mean dmi				
Mean estimatio	n	Number	r of obs =	201
	Mean	Std. Err.	[95% Conf.	Interval]
dmf	1.925373	.2365738	1.458874	2.391872

Wird das Clusterdesign berücksichtigt, *mean dmf, vce(cluster kiga)*, ergibt sich ein C.I. = (1,40 ; 2,45) und somit ein breiteres Konfidenzintervall.

Nähere Ausführungen über Clusterstichproben findet man in der Rubrik "Statistik im ÖGD"

Mean estimatio	n	Numbe	r of obs =	201
	(Std. En	rr. adjusted	for 5 cluster:	s in kiga)
		Robust		
	Mean	Std. Err.	[95% Conf.	Interval]
dmf	1.925373	.1892828	1.39984	2.450906

5.4. Verteilungen

. mean dmf, vce(cluster kiga)

Mit histogram ht, bin(6) start(155) frequency

erhält man beim Datensatz lung1984.dta die oben in 5.1. dargestellte Häufigkeitsverteilung für die Var **ht** in sechs Klassen. Verschiedene Boxplots dieser Var sind unter 4. Grafiken zu finden.

Für die Var sex wären Balken- oder Kreisdiagramm sinnvoll.

Für die Var *dmf* im Datensatz kiga_5.dta findet man folgende Verteilung: *histogram dmf, discrete frequency*

STATA - Kommandos für univariate Datenbeschreibung

describe

codebook

inspect

qnorm

tabulate

tab1 , tab2

summarize

bysort v: sum

tabstat v1, stats(n, mean, sum, sd, var, cv, sem, sk, kur, max, min, range) by(v2)

mean

ci means

proportion